Выявлены молекулярные механизмы отторжения органов

  • 24 июня, 2017
    0 Comments

    Ученым удалось выяснить, какие биохимические механизмы приводят к отторжению органов после трансплантации. Полученные знания помогут лучше подбирать пары доноров и реципиентов, а также разрабатывать новые способы подавления нежелательного иммунного ответа. Результаты исследования изложены в журнале Science Immunology.

    Тела пациентов отторгают примерно 50% пересаженных органов в течение 10-12 лет, поэтому уменьшить такой риск — весьма актуальная задача для ученых. «Впервые нам удалось взглянуть на самое начало процесса отторжения, — говорит соавтор работы Фади Лакки из Института трансплантологии имени Томаса Старлза. — Если его прервать, процесс отторжения можно будет прекратить».

    Иммунная система состоит из врожденной и адаптивной частей. Врожденная первой обнаруживает чужеродные клетки и активирует приобретенный иммунитет. Механизмы иммунной активации после трансплантации хорошо изучены, однако первичная реакция организма оставалась малопонятной.

    Авторы использовали классический генетический подход и показали, что у мышей молекула белка SIRP-alpha (Signal-regulatory protein alpha) включает активацию врожденной системы иммунитета и различается у неродственных особей. После трансплантации этот белок из чужой ткани связывается с рецептором CD47 на поверхности моноцитов рецепиента. Соединение этой молекулы с данным видом клеток врожденной иммунной системы вызывает каскад клеточных процессов, которые в результате приводят к активации всего иммунитета.

    Блокирование взаимодействия SIRP-alpha с CD47 у мышей остановило активацию моноцитов. Таким образом, воздействие на этот сигнальный путь может предотвратить иммунную активацию. У человека также есть белки SIRP-alpha, поэтому предварительное генетическое тестирование на их похожесть должно уменьшить вероятность отторжения.

    Оригинал: https://indicator.ru/news/2017/06/23/ottorzhenie-organov/

  • Экспертная колонка

    27 марта 2017

    Термин «стволовые клетки» придумал русский ученый А.А. Максимов еще в начале прошлого века, исследуя процесс кроветворения, затем А.Я. Фриденштейн доказал наличие других, не только кроветворных стволовых клеток. С тех пор мировая наука существенно продвинулась в изучении этого вопроса.

    Сегодня известно, что стволовые клетки являются основой самоподдержания и обновления организма человека. Установлено, что они входят в состав не только костного мозга, но и соматических и висцеральных тканей нашего организма. С различной степенью регулярности эти клетки обновляются, тем самым поддерживая здоровье человека на должном уровне.

    Некоторые клетки организма обновляются раз в две недели, а другие – раз в год, третьи – не обновляются совсем (например, нейроны), однако возраст и болезни уменьшают их количество. Таким образом, резерв стволовых клеток, «перезагружающих» и «ремонтирующих» наш организм истощается. Стало очевидно, что нужно повышать их потенциал, для чего можно, например, изымать стволовые клетки из организма, приумножать их в сотни, тысячи раз и вводить обратно. Кроме того, ученые с помощью стволовых клеток научились выращивать ткани и некоторые органы.

    Однако академик считает, что это не решит проблемы, потому что благодаря развитию медицины продолжительность жизни человека растет с каждым годом. Это может приводить к тому, что будет появляться все больше пациентов, которые будут нуждаться в органах для трансплантации: сердце, почках, печени, легких.

    Решение проблемы и логичное развитие регенеративной медицины он видит не в том, чтобы искусственно вырастить орган и подсадить его человеку (своего рода «паллиативное решение проблемы»), но научиться контролировать обновление клеток и программировать эту регенерацию внутри человеческого организма.

  • Видео недели

    Компания Abcam за 2 минуты познакомит вас с основными прорывами в области биомедицины за последние 20 лет. 

  • Twitter лента