Для системы CRISPR нашли аварийный выключатель

  • 09 января, 2017
    0 Comments

    Система редактирования генома CRISPR/Cas9, разработанная в 2012 году, позволяет направленно редактировать ДНК организма, не затрагивая остальные участки генома. Эндонуклеазы Cas9 разрезают ДНК в нужных участках, комплементарных «шаблону» РНК-гида, после чего собственные системы репарации клетки сшивают концы ДНК. 

    Система CRISPR/Cas9 основана на системе бактериального противовирусного иммунитета. Такой иммунитет позволяет бактериям находить фрагменты ДНК вируса в своей «картотеке» CRISPR (она расположена в определенном участке генома бактерии), и уничтожать вирусную ДНК с помощью нуклеазы. У бактерий существует несколько типов системы CRISPR и несколько нуклеаз, однако для целей редактирования генома в биоинженерии чаще всего используется нуклеаза Cas9. В свою очередь, вирусы-бактериофаги, от которых бактерии защищаются с помощью таких систем иммунитета, вырабатывают белки, блокирующие эти системы. Однако белки, блокирующие именно систему CRISPR/Cas9, до сих пор обнаружены не были.

    Для поиска таких белков авторы новой статьи сосредоточились на анализе профагов — участков генома вируса-бактериофага, интегрированных в геном бактериальных клеток. Идея заключалась в том, что если бактериофагу удалось встроить свои гены в бактериальный геном, обойдя систему защиты CRISPR/Cas9, то это значит, что у вирусов есть способы блокировки этой системы.

    Проанализировав около 30 штаммов бактерий Listeria monocytogenes, использующий систему CRISPR/Cas9, ученые обнаружили в их профагах гены четырех типов белков, блокирующих эту систему. Как показали эксперименты с использованием клеток Escherichia coli и клеток человека, два из этих белков, названные AcrIIA2 и AcrIIA4, эффективно блокировали нуклеазу Cas9 бактерии Streptococcus pyogenes (именно она чаще всего используется в биоинженерии).

    Обнаруженные ингибиторы позволят повысить точность CRISPR/Cas9, включая и выключая ее в нужное время и регулируя ее активность в разных участках генома или в разных тканях. Также применение белков-ингибиторов сможет сделать систему CRISPR/Cas9 более безопасной: в том случае, если что-то пойдет не так, ее активность можно будет заблокировать. Статья опубликована в журнале Cell.

    Оригинал статьиСофья Долотовская https://nplus1.ru/news/2016/12/30/switchoff

  • Экспертная колонка

    27 марта 2017

    Термин «стволовые клетки» придумал русский ученый А.А. Максимов еще в начале прошлого века, исследуя процесс кроветворения, затем А.Я. Фриденштейн доказал наличие других, не только кроветворных стволовых клеток. С тех пор мировая наука существенно продвинулась в изучении этого вопроса.

    Сегодня известно, что стволовые клетки являются основой самоподдержания и обновления организма человека. Установлено, что они входят в состав не только костного мозга, но и соматических и висцеральных тканей нашего организма. С различной степенью регулярности эти клетки обновляются, тем самым поддерживая здоровье человека на должном уровне.

    Некоторые клетки организма обновляются раз в две недели, а другие – раз в год, третьи – не обновляются совсем (например, нейроны), однако возраст и болезни уменьшают их количество. Таким образом, резерв стволовых клеток, «перезагружающих» и «ремонтирующих» наш организм истощается. Стало очевидно, что нужно повышать их потенциал, для чего можно, например, изымать стволовые клетки из организма, приумножать их в сотни, тысячи раз и вводить обратно. Кроме того, ученые с помощью стволовых клеток научились выращивать ткани и некоторые органы.

    Однако академик считает, что это не решит проблемы, потому что благодаря развитию медицины продолжительность жизни человека растет с каждым годом. Это может приводить к тому, что будет появляться все больше пациентов, которые будут нуждаться в органах для трансплантации: сердце, почках, печени, легких.

    Решение проблемы и логичное развитие регенеративной медицины он видит не в том, чтобы искусственно вырастить орган и подсадить его человеку (своего рода «паллиативное решение проблемы»), но научиться контролировать обновление клеток и программировать эту регенерацию внутри человеческого организма.

  • Видео недели

    Ученые из клиники Майо решили изучить влияние микрогравитации на рост и биологические свойства стволовых клеток, для чего в ближайшее время будет подготовлен эксперимент по культивирования стволовых клеток человека на МКС. Спицалисты считают, что микрогравитация и невесомость могут не просто менять регенеративный потенциал стволовых клеток, но и стать новым способом более эффективного культивирования и найти свое применение в тканевой инженерии.

  • Twitter лента